How Austin E-Waste Recycling Can Become Profitable

0 comments
By Ines Flores


There is more to electronic e-waste than carelessly discarded batteries. The terminology includes all digital devices and appliances with the potential to be tossed into a landfill, including kitchen microwave ovens as well as old computers. The problem is growing, and not limited to wealthier consumer-oriented countries. Recycling and re-using Austin e-waste both responsibly and profitably is a common goal for many Texas municipalities.

The primary driving force behind this explosion in consumer electronics is improved economics that expands buying ability while keeping prices down. Most types of these devices are constantly being improved, and there is no effort made to repair the old ones that fail. There have been many sensational news stories regarding the highly toxic substances they contain, but that issue is only one part of the picture.

Inside each old appliance are a long list of precious metals. Although the old massive computer displays are gone, any new device that hosts a printed circuit automatically contains a measurable amount of gold, platinum, silver, and palladium. Elements with exotic names such as indium and gallium are important in new flat-screen display technologies, and all have comparatively high value in the recycling industry.

It is impractical to do that extraction on a personal basis, but in large quantities this modern form of mining produces more pure metal than the original ores. Comparatively rare and costly metallic elements are a small fraction of the materials used to manufacture a new smartphone, which also contain significant amounts of copper and other more common metals. The accompanying plastics can also be partially recycled.

The process begins with collecting discarded items profitably. This can be accomplished voluntarily on a small scale by individuals, or more efficiently by larger businesses. In many locations it begins by manually separating the internal components, which removes microchips and processors from their individual frames. The remainder is then run through a device that shreds the material in a way that makes further purification possible.

After being processed to complete the extraction, the purified products are then sold back to manufacturers. The industrialists benefit from this more direct method of mining, and consumers also see personal benefits in the form of a somewhat lower pricing structure. Disposal of outdated equipment in a responsible matter is incredibly important, but is only part of the overall view.

As the amount of this discarded material increases, efforts to promote recycling have been scaled up, but the amount of waste alone still poses health hazards. The effects have been widely documented, and include both mercury and lead poisoning. Children exposed over time to these toxins often have developmental issues, and adults may suffer brain issues or respiratory problems.

The extent of this type of contamination is difficult to accurately track using conventional processes. The issue exists because of current economic and societal realities, and can be solved in a similar manner. Although it is urgent to remind people of the health hazards that uncontrolled e-waste dumping produces, the most practical solution for the long term is further development of business that profits from recycled electronics.




About the Author:



Leave a Reply

 

About